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On Surface Integral Representations: Validity of
Huygens’ Principle and the Equivalence Principle

in Inhomogeneous Bianisotropic Media
J. cesar Monzon, Member, IEEE

Abstract— Here we provide the mathematical foundation for
general inhomogeneous (even discontinuous) media for the prin-
ciple that Huygens devised with ingenious foresight over three
hundred years ago (1690). We also validate the associated (and
often used without a proofJ equivalence principle as a natural
extension of the isotropic formalism.

I. INTRODUCTION

sURFACE integral representations (SIR) are very valuable
for analytical and numerical investigations of scatter-

ing and radiation problems, mainly because they provide a
foundation for approximations, and because the computer

requirements are significantly reduced as compared with a

volumetric approach.
Huygens’ original idea that, in a homogeneous isotropic

medium, each point on the wavefront could be regarded as
a new source of waves, was extended by himself 300 years
ago [1] to the case of the uniaxial calcite crystal in order
to explain double refraction, This resulted in ingenious and
beautiful geometric constructions, which clearly illustrate the

validity of Huygens’ principle for the uniaxial case, at least

on an informal level, since polarization and amplitudes were
not accounted for.

Application of Green’s. theorem provided a mathematical
foundation for Huygens’ principle in a homogeneous isotropic
medium, but the uniaxial case was never validated. It is
interesting to note that not even the inhomogeneous isotropic
case has been treated in the literature in this context, and
that until recently [2] a detailed mathematical formulation
of the equivalence principle under the constraints of ho-

mogeneity and isotropy was unavailable (only a descriptive
and pictorial presentation of the equivalence principle was
available). However, the apparently more complex moving

homogeneous isotropic media (a special type of bianisotropic)
was successfully analyzed by Schwiger and Levine (see for
instance [3]) who obtained a corresponding SIR. Also, the
case of an inhomogeneous (but continuous) magnetoionic
(plasma) medium was successfully treated by Williams [4]
who obtained the SIR for the electric field. Two-dimensional
problems involving homogeneous anisotropies have been sim-
plified through the use of an SIR derived by this author for
ten- [5] and (full tensor) eighteen- [6] parameter material; the
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former (simpler) case did not involve polarization coupling,

while the latter involves depolarization and is more complex
in nature. More recently, this author has derived SIR for the
homogeneous biisotropic case [7].

This paper is apparently ambitious since we attempt to
formally extend Huygens’ principle to bianisotropic regions
(i.e., anisotropic regions whose material media becomes po-
larized when placed in a magnetic field and magnetized
when placed in an electric field) of arbitrary inhomogeneity,
including discontinuities. However, as will be seen shortly, the

analysis is rather simple and straightforward, leading to easy

understanding of the principle.

II. THE SURFACEINTEGRALREPRESENTATIONS

Some confusion arises in the literature because some re-
searchers employ different constitutive relations, which can
be shown to be equivalent for time-harmonic fields. This is
particularly true in the isotropic chiral reciprocal case (a very
specialized subset of the general problem we are presently

dealing with), as noted in [8]. Here we adopt constitutive
relations corresponding to the model due to Tellegen [9],

(also appearing in [10]), which is consistent with the model
proposed by Post [11].

Let region V be a source-free inhomogeneous bianisotropic
region where Maxwell’s equations acquire the form

v x E = -ju{~(?i) .m+~(z) .E} (la)

vxn=jw{:(z) .z+~(m). m}, (lb)

where an exp(jtit) time convention is assumed and sup-
pressed. Let V be bounded by surface S of inward nor-

mals A shown in Fig, 1, We now define the auxiliary fields
E., Ha, which are point source responses in the complemen-

–C
ta~yTmediu=mC[10], ~,) which ~

=T =C =T, ~c =
=p, ,e=e

-~ and< =-<:

{
v x z. = –jw j!iT(z) .77. – ?T(z) .Ea

}

– Cmlmti(z – 3?) (2a)

{
V x H. = jW ~T(Z) .~a –~T(Zi) .~a

}

+ CJe($(z – T/’) (2b)
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Fig. 1. Bianisotropic volume V is bounded by surface S (of inward normals
Fs) and is characterized by position-dependent material parameters, which are
allowed to be discontinuous (on surface SD).

where the superscript T denotes transpose, and Cm and c.
are the amplitudes of the magnetic and elec~ric cur~ents that
are located in V at z‘ and z” respectively. lm and & denote
the corresponding orientations.

Dot multiplying (2b) by ~ and (1a) by ~., and after
subtracting the resulting equations and using the fact that

ZT
z.E.Z=Z.E .G, we get:

v.(Eax E)=jw[Ea .:(z).E+Ea. ~(z).E]
+ Cez .Q@ – 37’) (3a)

Similarly, from (2a) and (lb) we get:

Substructing the above two equations we obtain:

We can now apply Gauss’s Theorem to (3c), over the volumes
not containing the neighborhood of surfaces SD, over which

we find material discontinuities (abrupt change, interface), and
where there is a chance that the argument of the divergence
will be discontinuous. We obtain for z‘, z” in V but not
on SD 1

.[77XE a –ITa x E]T = CJ7(Z’)

. I?m– ceE(z”) . i= , (4)

where the bracket []~ signifies jump across SD. Had the points

z‘ or z” not lain inside of V, their contribution to the right
hand side of (4) would have been zero.

Because only the normal to SD component of (~ x E. –
~. x ~) plays a significant role, and because this only
involves the tangential to SD components of ~, E., ~. and
~, which are known to be continuous across SD, indepen-
dently (provided of course no delta-function-like material jump
occurs on SD, such as can be caused by an infinitesimally thin

resistive sheet), it follows that the integrals over SD are zero,

leading to

–cmE(z’) . & + C. E(Z”) .1. =
!

dS{(iix~)

.Sk-ma. (zxq}.

(5)

By properly setting the C parameters~o 1 and O, and account-
ing for arbitrary source orientation 1 via the introduction of

Dyadic Green’s functions, we obtain the SIR.

A. SIR for the Electric Field

Here we set Cm = O and C’, = 1, and :

E. (z) = 5:.(Z; T “) . i,

Ha(z) = G:e(z; z”) .1. , (6)

=C
which define the G dyadics in complementary space, whose
first subindex refers to the field that is being calculated,

whereas the second subindex refers to the kind of source

(e/m = electric/magnetic).
Use of the above in (2), and after some m=a~ipulations results

in the following differential equation for G., (z; z” ):

[( )
Vx ~T

-l VX=:.] +~’J{~T(~T)-’vx=:.

(( )

–1 =T =.
–Vx ~T .t Gee

)}

_u2[7T_7T.(~T)-l.~T] .~:e=_jw@_&),

(7)

where the position dependence of all the electric parameters
is not shown expli~i~y for convenience. Further, from (6) and

(2a) we find that Gme(z; z“) is given by:

‘~e= (~T)-l’{;vx~:.+~T~:.] (8)

Finally, use of (6) in (5) and eliminating the ~. factor re-
sults in:

~(?i?) =1 dS{(iix~) G:.(Z;7’)- (~xh)

“ =:e(z~’)} , (9)

which is the desired SIR. This, however, contains the foreign
dyadics of the complementary space and therefore does not
constitute a basis for definition of Huygens’ principle nor can
it be used to state an equivalence theorem. To accomplish this
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we need to identify source terms and express the above dyadics
in terms of the real space ones.

Given the complexity of (7), the lack of reciprocity in this
medium, and the fact that the G’s are not functions of just

(5 – 7’) (see, for instance, [5]), it is not deemed appropriate
to use an algebraic method to try to establish some symmetry
relations between the G’s of the complementary medium and
the corresponding ones of the real space. These relations are
needed in order to be able to write the right-hand side of (9) on
a more aesthetic form wherein the sources (ii x ~ or 1? x h)
and the response of the medium are clearly identified. A

simple method of obtaining such relationships is presented
in Section III.

B. SIR for the Magnetic Field
,_

One obvious SIR for H is obtained by expressing ~ in
terms of ~ and its curl from (la), and using (5) for ~. Such an
expression is, however, not too appealing because the sources
of the fields are not evident as in (9). We now set C, = O
and Cm = 1, and

z. = F:m(Zi@) .im

ma = G:m(z; z’) . im . (lo)

=C
Following the steps that led to (9), we find that Gmm (~ z’)
satisfies:

[()7X :T .Vxq +,U{VX((7T)-1.?T.:) ()
EC =T

}

-.’[zT:~Te;:T)::;:::::.’’(’-”’)

(11)

=C —
while Ge, (z; z‘) is related to Gmm (~ z‘) via:

~A&A8(Z – Ei)] and MA (magnetic~~A = MA&6(IiT-~))
caused by sources ~B (electric: JB = JB&B8(?i?– zi))
and ~B [magnetiC : ~B = M~&8(z – TE)] is equal to
the reaction of sources ~B, ~B caused by 7A, ~A in the

complementary medium. This can be written as:

L 1.
GY(jA.~B–~A.HB)= W

(
. JB.i?~-MB.71’~

)
(14)

where the superscript C’ stands for complementary space, and
the subscripts A and B in the fields stand for the sources.
Using the expressions for the sources, (14) reduces to

Furthermore, and in agreement with (6) and (10), we have
that the fields are given by:

and

Use of (16)–(17) in (15) leads to:

and the resulting SIR is given by

- (Ex ii) -=:m(z;E’)}. (13)

Once again we observe that no Huygens’ principle or
physical interpretation can be given to this representation
because no relationship between the complementary and real
sp,ace Green’s dyadic is available. These relationships are
established in the next section, and, as will be seen, they appear
to be deceptively simple.

III. HUYGENS’ PRINCIPLE

A simple yet powerful method of relating ~ and ~ c is
provided by the modified reciprocity theorem for inhomo-
geneous bianistropic regions [10]. According to this reac-
tion theorem, the IWCtiOII of sources 7A [electric : 7A =

From this and the fact that the source amplitudes as well as
their locations are arbitrary, we find that the G’ and G are
related via
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Fig. 2. Illustration of Huygens’ principle for inhomogeneous bianisotropic
regions. (a) Original configuration. (b) Equivalent configuration. As in the
homogeneous isotropic case: ~ = ii x ~, ~ = ~ x i.

A simple set of relationships whose similarity to the ones
characterizing the complementary medium parameters in terms
of the real space parameters is to be noted.

Use of (19) in (9) and (13), and after interchanging Z’ and
Z, and defining:

~s=iix H; ~s=E xii, (20)

we obtain:

for z E V. Equations (21) and (22) state that the field solution
in the inhomogeneous bianisotropic domain V is completely
determined by the tangential fields of E and H specified
over the surface S enclosing V. Therefore, equations (21) and
(22) clearly validate the extension of the usual homogeneous
isotropic Huygens’ principle to inhomogeneous bianisotropic

domains. This is illustrated in Fig. 2.

IV. THE EQUIVALENCEPRINCIPLE

If we had accounted for sources ~ and iW in region V in
the previous discussion [i.e., include source terms on the right
hand side of (l)], and allow the point z to lie outside V as

well [as discussed in the sentence following (4)], we could

have found that the integrals on the left-hand side of (21)
and (22) represent only the scattered field. In the presence of
sources in V, (21) and (22) become

– ‘“C(Z), ~ ‘“C(Z) are the fields produced by thewhere E

sources ~ and M in free (inhomogeneous) infinite space.
From (23) and (24) we arrive at the almost paradoxic

(but sound) conclusion that the representation is valid in V,
regardless of how we “continue” or extend our inhomogeneous

material (defined only in V) to regions outside V. Similarly,
for z @ V, (23) and (24) establish relationships between
the tangential fields on the boundary; the relations~ips being

obviously unique, independently of the form of the ~’s, which
can vary as the material can be arbitrarily extended to regions
outside V.

The above, somewhat strange concept, is not so strange,
since it even holds under more familiar isotropic conditions.
As a simple illustration of this we consider the spherical

shell region of Fig. 3(a). Here V is bounded by the spherical
surfaces S. and Sb, and contains the sources ~, M. Let for

simplicity V be characterized by homogeneous biisotropic

c, w, T and ,6 parameters, so that a field expansion in terms
of solutions to the Helmhotz equations (for both modes) is
feasible [7], resulting in a clearly valid relationship between
the tangential fields on S. and Sb, independently of what
materials we have outside V. Now consider the situation of
Fig. 3(b), where an anisotropic sphere is embedded in volume
V&re (biisotropic, same as V), which is in turn bounded by

S.. Consider for simplicity the case where the anisotropy ?, ~
is such that allows decomposition of the fields in terms of
(transversal 0, q5)Tesseral harmonics, such as occurs in [12].
It is then feasible to formally and straightforwardly solve
the problem of Fig. 3(b), in the inhomogeneous region: V +
Vcore, Obtainiw a wr=ntation at aw point in terms of the
tangential fields on sb alone. Thus, the fields tangential to any
surface such as S. are expressible in terms of the tangential
on Sb, such a relationship being independent of what lies
inside VCOre.This simple example shows that a Green’s dyadic
accounting for scattering by bodies or inhomogeneities outside

V may be employed as well in a field representation in V.
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Fig. 3. Asimple illustration of the fact that the field representation invalid
in V, regardless of how the inhomogeneities are extended outside of 1’. (a)
Homogeneous biisotropic spherical shell region. Via a standard model solution
a relationship between the tangential fields on S. and sb is established.
@)Here Visaninhomogeneous region consisting of the anisotropic core
and the surrounding biisotropic space. A model solution is also feasible and
incorporates the effect of the core; the relationship between the tangential
or S. and sb will, however, remain unchanged. This demonstrates that a
problem in a given region may be posed in terms of point source responses,
which correspond to arbitrary inhomogeneities outside the regions of interest.

Equations (23) and (24) are in standard form and since they
involve only the Green’s dyadics in real space, they clearly
validate the applicability of the homogeneous isotropic equiv-
alence principle for inhomogeneous bianisotropic regions. The

equivalent currents do not need to be modified in any form

with respect to those in the isotropic case and, likewise, they
radiate in “free” space. The use of (23)–(24) is illustrated in
Fig. 4.
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Fig. 4. Pictorial illustration of (23)–(24), as applied to the inhomogeneous

bianisotropic region V characterized by e(%), ~(z), ~(E), and 7(z). The
material outside V is arbitrary (inhomogeneous), and has no effect in the
computation of fields ~(~), H(z), in V, in terms of the equivalent sur-
face currents ~S, ~S. The elements ~ and ~ in V represent sources.

In view of the fact that (23)–(24) are identical in form to

those encountered in the homogeneous isotropic analyses [2], it
seems trivial and unnecessary to go into a detailed description
of the equivalence principle, by considering outer and inner
regions to show that in V the effective currents can be written

Suffice it to show the results ‘in graphical form. This ‘shown
in Fig. 5, which applies (23)-(24) to a region external to that

considered in Fig. 4 (surface at infinity does not contribute
due to radiation behavior of dyadic Green’s functions provided
inhomogeneities do not allow unattenuated wave guidance to
infinity). Combining Figs. 4 and 5 we obtain the familiar
field representation in V. This is shown in Fig. 6, where
net equivalent currents are defined. The tangential ~OUt and
~OUt have no real effect on the field representation (they are
however related through the field equations in the external to
V region) and can be chosen so as to cancel the effect of either
~in or E,. or partly ~in and partly Ein. For convenience this

is illustrated is Fig. 7 and we do not elaborate on this since
the isotropic concept remains unchanged.

V. CONCLUSION

Huygens’ principle and the equivalence principle have been
shown to be applicable to bianisotropic inhomogeneous re-
gions. Just as in the isotropic case, the equivalent currents
involve only the tangential fields (ii x ~, ~ x ii), and radi-
ate in free (infinite) space. The definite noninvolvement of
the normal field components (as occurs in the presence of
diffusion) is another attractive feature of this exact formalism

and may lead to many potential applications, for the num-
ber of unknowns in any interaction problem is substantially
reduced (to the bounding surface). Even though our result

appears deceptively simple, the basic physical processes such



2000 IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, VOL. 41,NO. 11,NOVEMBER 1993

---
0 -

/ Inhomogenecms” .
Bianistr~pic

\

v Region \

A ks ~,

/’ Zero Field

\

\

Fig. 5. Representation (23)–(24) applied to volume V bounded by the
closed surface S and the spherical surface of infinite radius S~. Provided
the inhomogeneities in V are such that do not allow localized, guided
(unantenuated) transport of energy to infinity (such as could happen with a
straight optical fiber extending to infinity), the surface at infinity gives no

–(1)
contribution to the surface integral. Here J~

—(1)
and MS are equivalent

sources on S, and ~1, ~1 are actual sources. The region internal to S
contains an arbitrary medium (inhomogeneous, bianisotropic).
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Fig. 6. Combination of the models of Figs. 4 and 5, in a composite field
representation in volume V. me elements corresponding to the volume
external to V are denoted by an ““a”, for auxiliary fields. Ttte entire space is
bianisotropicafly inhomogeneous, reducing~o the pr~cribed inhomogeneities
within V. The net equivalent sources are .J~q and ~~q.

as birefringence, lack of reciprocity, optical rotatory power,
and extraordinary/inhomogeneous character of elemental wave
behavior, and so on, are all properly accounted for. This study
should lead to better understanding of physical processes in
bianisotropic media.

4
E*

(c)

(b)

s

Fig. 7. The nonuniqueness of the equivalent sources (depicted in Fig. 6)
can be exploited to generate an infinite number of equivalent models. Here
we sketch a few (a) using only electric currents; (b) using only magnetic
currents; (c) partial electric, partial magnetic over complementary regions of
S; (d) electric and magnetic over partial region of S only (half).
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